Tumor Necrosis Factor-α Mediates One Component of Competitive, Experience-Dependent Plasticity in Developing Visual Cortex

نویسندگان

  • Megumi Kaneko
  • David Stellwagen
  • Robert C. Malenka
  • Michael P. Stryker
چکیده

Rapid, experience-dependent plasticity in developing visual cortex is thought to be competitive. After monocular visual deprivation, the reduction in response of binocular neurons to one eye is matched by a corresponding increase to the other. Chronic optical imaging in mice deficient in TNFalpha reveals the normal initial loss of deprived-eye responses, but the subsequent increase in response to the open eye is absent. This mutation also blocks homeostatic synaptic scaling of mEPSCs in visual cortex in vitro, without affecting LTP. In monocular cortex, thought not to be subject to competition, responses in TNFalpha mutants are as reduced as in the binocular zone. Pharmacological inhibition of endogenous TNFalpha in wild-type mice phenocopies the knockout. These findings suggest that experience-dependent competition in developing visual cortex is the outcome of two distinct, noncompetitive processes, a loss of deprived-eye responses followed by an apparently homeostatic increase in responses dependent on TNFalpha signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

Local GABA circuit control of experience-dependent plasticity in developing visual cortex.

Sensory experience in early life shapes the mammalian brain. An impairment in the activity-dependent refinement of functional connections within developing visual cortex was identified here in a mouse model. Gene-targeted disruption of one isoform of glutamic acid decarboxylase prevented the competitive loss of responsiveness to an eye briefly deprived of vision, without affecting cooperative m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2008